On the Coherent Risk Measure Representations in the Discrete Probability Spaces

نویسنده

  • KEREM UĞURLU
چکیده

We give a complete characterization of both comonotone and not comonotone coherent risk measures in the discrete finite probability space, where each outcome is equally likely. To the best of our knowledge, this is the first work that characterizes and distinguishes comonotone and not comonotone coherent risk measures via AVaR representation in the discrete finite probability space of equally likely atoms. The characterization gives a more efficient and exact way of representing the law invariant coherent risk measures in this probability space, which is crucial in applications and simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kusuoka Representations of Coherent Risk Measures in Finite Probability Spaces

Kusuoka representations provide an important and useful characterization of law invariant coherent risk measures in atomless probability spaces. However, the applicability of these results is limited by the fact that such representations do not always exist in probability spaces with atoms, such as finite probability spaces. We introduce the class of functionally coherent risk measures, which a...

متن کامل

Kusuoka representations of coherent risk measures in general probability spaces

Abstract: Kusuoka representations provide an important and useful characterization of law invariant coherent risk measures in atomless probability spaces. However, the applicability of these results is limited by the fact that such representations do not always exist in probability spaces with atoms, such as finite probability spaces. We introduce the class of functionally coherent risk measure...

متن کامل

Classification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions

Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...

متن کامل

Coherent Risk Measures on General Probability Spaces

We extend the definition of coherent risk measures, as introduced by Artzner, Delbaen, Eber and Heath, to general probability spaces and we show how to define such measures on the space of all random variables. We also give examples that relates the theory of coherent risk measures to game theory and to distorted probability measures. The mathematics are based on the characterisation of closed ...

متن کامل

Monetary risk measures on maximal subspaces of Orlicz classes

Coherent, convex and monetary risk measures were introduced in a setup where uncertain outcomes are modelled by bounded random variables. In this paper, we study such risk measures on maximal subspaces of Orlicz classes. This includes coherent, convex, and monetary risk measures on L-spaces for 1 ≤ p < ∞ and covers a wide range of interesting examples. Moreover, it allows for an elegant duality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015